skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gnann, Sebastian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydrologic signatures are quantitative metrics that describe streamflow statistics and dynamics. Signatures have many applications, including assessing habitat suitability and hydrologic alteration, calibrating and evaluating hydrologic models, defining similarity between watersheds and investigating watershed processes. Increasingly, signatures are being used in large sample studies to guide flow management and modelling at continental scales. Using signatures in studies involving 1000s of watersheds brings new challenges as it becomes impractical to examine signature parameters and behaviour in each watershed. For example, we might wish to check that signatures describing flood event characteristics have correctly identified event periods, that signature values have not been biassed by data errors, or that human and natural influences on signature values have been correctly interpreted. In this commentary, we draw from our collective experience to present case studies where naïve application of signatures fails to correctly identify streamflow dynamics. These include unusual precipitation or flow regimes, data quality issues, and signature use in human-influenced watersheds. We conclude by providing guidance and recommendations on applying signatures in large sample studies. 
    more » « less
  2. Abstract Global water models are increasingly used to understand past, present and future water cycles, but disagreements between simulated variables make model-based inferences uncertain. Although there is empirical evidence of different large-scale relationships in hydrology, these relationships are rarely considered in model evaluation. Here we evaluate global water models using functional relationships that capture the spatial co-variability of forcing variables (precipitation, net radiation) and key response variables (actual evapotranspiration, groundwater recharge, total runoff). Results show strong disagreement in both shape and strength of model-based functional relationships, especially for groundwater recharge. Empirical and theory-derived functional relationships show varying agreements with models, indicating that our process understanding is particularly uncertain for energy balance processes, groundwater recharge processes and in dry and/or cold regions. Functional relationships offer great potential for model evaluation and an opportunity for fundamental advances in global hydrology and Earth system research in general. 
    more » « less
  3. Abstract Dominant processes in a watershed are those that most strongly control hydrologic function and response. Estimating dominant processes enables hydrologists to design physically realistic streamflow generation models, design management interventions, and understand how climate and landscape features control hydrologic function. A recent approach to estimating dominant processes is through their link to hydrologic signatures, which are metrics that characterize the streamflow timeseries. Previous authors have used results from experimental watersheds to link signature values to underlying processes, but these links have not been tested on large scales. This paper fills that gap by testing signatures in large sample data sets from the U.S., Great Britain, Australia, and Brazil, and in Critical Zone Observatory (CZO) watersheds. We found that most inter‐signature correlations are consistent with process interpretations, that is, signatures that are supposed to represent the same process are correlated, and most signature values are consistent with process knowledge in CZO watersheds. Some exceptions occurred, such as infiltration and saturation excess processes that were often misidentified by signatures. Signature distributions vary by country, emphasizing the importance of regional context in understanding signature‐process links and in classifying signature values as “high” or “low.” Not all signatures were easily transferable from single, small watersheds to large sample studies, showing that visual or process‐based assessment of signatures is important before large‐scale use. We provide a summary table with information on the reliability of each signature for process identification. Overall, our results provide a reference for future studies that seek to use signatures to identify hydrological processes. 
    more » « less